
Increasing the Performance of Fuzzy Retrieval Using Impact Ordering

Carlos D. Barranco1 Sven Helmer2

1Division of Computer Science, School of Engineering, Pablo de Olavide University
Seville, Spain

2School of Computer Science and Information Systems, Birkbeck, University of London
London, United Kingdom

Email: cbarranco@upo.es, sven@dcs.bbk.ac.uk

Abstract— We propose an approach for indexing fuzzy data based
on inverted files that speeds up retrieval considerably by stopping the
traversal of postings lists early. This is possible because the entries
in the postings lists are organized in a way that guarantees that there
are no matching items beyond a certain point in a list. Consequently,
we can reduce the number of false positives significantly, leading to
an increase in retrieval performance. We have implemented our ap-
proach and evaluated it experimentally, comparing it to an approach
that has previously been shown to be superior to other methods.

Keywords— fuzzy databases, access methods, inverted files,
physical design

1 Introduction
Being able to handle imprecise or uncertain data becomes ever
more important in today’s world. There are numerous ap-
plications that have to manage imperfect data in areas such
as knowledge discovery, mediator systems, information re-
trieval, multimedia, and profiling (vague) users’ preferences.
One way to model imprecision and uncertainty is to employ
concepts from fuzzy set theory. Fuzzy sets are making their
way into the database world, evidenced by the fact that sev-
eral proposals for fuzzy database models and systems exist
[1, 2, 3, 4, 5] (for an overview see [6]).

We are focusing on a well-known model for fuzzy
databases, namely the possibilistic database model [5]. This
approach uses the concepts of possibility and necessity mea-
sures for flexible querying. While this is an elegant way
to formulate queries, indexing possibility distributions is not
straightforward. Bosc and Galibourg introduced an indexing
principle based on α-cuts (i.e. the elements of a fuzzy set with
a membership degree of at least α) [7]. The parameter α is
tied directly to a threshold value determined by a user defin-
ing a query, which makes it unrealistic to materialize dozens
or even hundreds of α-cuts in different indexes to be able to
answer various queries efficiently. For that reason Bosc and
Galibourg developed a filtering mechanism based on the sup-
ports and cores of the indexed possibility distributions1. How-
ever, this can introduce a large number of false positives, as
the filter only acts as a “quick-and-dirty” test. All the candi-
dates that pass the filter have to be checked for eligibility in a
second step.

We propose an access method for indexing possibility dis-
tributions that cuts down the number of false positives signif-
icantly. Many different α-cuts are stored compactly in a sin-
gle index structure by arranging the references to possibility

1Supports and cores are special α-cuts.

distributions in a clever way. The idea is based on impact or-
dering of inverted files used in information retrieval (IR). In
IR systems, document references are sorted in descending or-
der according to the term frequency value to make sure that
important documents for a query are processed first [8]. In
our case references to possibility distributions are sorted ac-
cording to the certainty degrees of their elements, making it
possible to stop scanning lists of references at an early stage
(because we know that no eligible data items can follow). By
applying customized gap compression schemes to the inverted
files, we can store the lists very compactly.

The remainder of this paper is organized as follows. In the
section immediately following this introduction, we cover ba-
sic definitions of possibilistic database systems and how to
query them. In Section 3 we describe our access method in
more detail and explain how to answer queries based on the
possibility measure and those based on the necessity measure.
Section 4 includes a brief description of the approach that we
compared ours to. This is followed by a section on the exper-
imental evaluation, specifying the environment in which this
evaluation was run and presenting the results of the evalua-
tion. We wrap up the paper with a conclusion and outlook in
Section 6.

2 Preliminaries
Before going into details about indexing, let us briefly define
possibility distributions and their application in flexible query-
ing as defined in [5].

2.1 Possibilistic Databases
We assume (without loss of generality) n data items
(o1, o2, . . . , on) in our database, all of which have an attribute
A with a discrete domain Ω. The value of attribute A of
data item oi is described by a possibility distribution function
πA(oi) on Ω.

The possibility distribution πA(oi) is a set of possible val-
ues for the attribute A of the data item oi (together with the
certainty of each value) and is defined as:

πA(oi) : Ω �→ [0, 1] (1)

πA(oi)(ωj) = 0 (for ωj ∈ Ω) means that it is impossible
that the attribute A can take on the value ωj . πA(oi)(ωj) = 1,
on the other hand, means that it is completely possible that A

can take on the value ωj . If we want to express that it might

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

957

ω1 → α1,1 r(o1,1
1), r(o1,1

2), r(o1,1
3), . . . α1,2 r(o1,2

1), r(o1,2
2), r(o1,2

3),
ω2 → α2,1 r(o2,1

1), r(o2,1
2), r(o2,1

3), . . . α2,2 r(o2,2
1), r(o2,2

2), r(o2,2
3),

...
ωm → αm,1 r(om,1

1), r(om,1
2), r(om,1

3), . . . αm,2 r(om,2
1), r(om,2

2), r(om,2
3),

Figure 1: Inverted file index for fuzzy retrieval

be possible for A to take on the value ωj , then we can assign
a value from the interval (0, 1) to πA(oi)(ωj), depending on
how plausible we think it is that A takes on this value. Not
that the possible values for A are mutually exclusive, i.e. A

takes on a single value, we are just uncertain about which one
is the correct value. For reasons of consistency, πA(oi) should
be normalized, i.e. ∃ω ∈ Ω : πA(oi)(ω) = 1.

As already mentioned, we assume that Ω is discrete, since
we are interested in indexing scalar data. In the case of ap-
plications using continuous numerical data, we either have to
discretize the possibility distribution or use a different kind of
index structure [9]).

2.2 Flexible Querying
We not only allow imprecision in the data, but also flexible
querying, i.e. the query condition c determining the acceptable
values of an attribute is described by a normalized fuzzy set
µc : Ω #→ [0, 1].

In order to be able to check whether a data item satisfies a
query condition, we need to introduce the concept of a fuzzy
measure. Let X be an element of the power set of Ω (X ∈
P(Ω)A). The possibility of X , Π(X), is measured by looking
at the elements of X :

Π(X) = max
ω∈X

π(ω) (2)

Possibility theory uses two concepts to measure the like-
liness of X : the possibility measure, as already described
above, Π(X) and the necessity measure N(X). The necessity
of X , N(X), is defined by the unlikeliness of the complement
of X :

N(X) = 1 − Π(X) (3)

What does this mean for an attribute value satisfying a
query condition c? The possibility of doing so is measured
with the help of the possibility measure:

Π(c|A(oi)) = max
ω∈Ω

min(µc(ω), πA(oi)(ω)) (4)

Informally speaking, Π(c|A(oi)) returns the highest degree to
which A(oi) can possibly satisfy c.

The necessity of an attribute value satisfying query condi-
tion c is defined as:

N(c|A(oi)) = min
ω∈Ω

max(µc(ω), 1 − πA(oi)(ω)) (5)

N(c|A(oi)), on the other hand, returns the degree to which
A(oi) certainly satisfies c.

Usually users are interested in a small subset of data items
in the database. Selective queries can be formulated by pro-
viding an acceptance threshold α (e.g. return all data items
whose attribute values possibly satisfy c to at least a degree of
0.8: {oi|Π(c|A(oi)) ≥ 0.8}). Furthermore, using the neces-
sity measure also leads to more selective queries than using
the possibility measure.

3 Indexing Possibility Distributions

As mentioned in Section 1 we use an inverted file index to
index possibility distributions. An inverted file consists of a
directory containing all distinct values ω1, ω2, . . . , ωm of the
domain Ω and a list (also called a postings list) for each value.2
Within each postings list of the inverted file, we sort the refer-
ences to data items oj , denoted by r(oj), in descending order
of the degree of membership of wi in πA(oj). Since we want
to apply gap compression (more on this later in Section 3.3),
we arrange the references in blocks, each block preceded by a
value αi,k, meaning that this is the k-th block of the posting
list associated with ωi. All attributes of the data items refer-
enced in a block satisfy πA(oj)(ωi) ≥ αi,k. Figure 1 illustrates
the layout described above; note that the data items have su-
perscripts indicating which block they belong to. The thresh-
old values αi,k divide up the interval [0,1] into equally-sized
partitions (i.e. each block covers an equally-sized interval).
Within each block all references to data items (in the form of
IDs) are sorted in ascending order.

Depending on the query type, we access the inverted file
index slightly differently. We will first look at queries based
on the possibility measure and then turn to those based on the
necessity measure.

3.1 Possibility Measure Queries

If we are searching for all data items oj whose attribute A sat-
isfies condition c possibly to a degree of at least α, we only
have to look up the values ωi in the inverted file for which
µc(ωi) ≥ α (see Equation (4)). In addition to that, only data
items for which πA(oj)(ωi) ≥ α will qualify. During a search,
we scan a postings list until we reach the first block whose
value αi,l is smaller than the query threshold value α.3 If α is
between αi,l−1 and αi,l, then we still have to check the data
items referenced in this block whether they are false positives
or not (as some of them could satisfy the query predicate).
However, only the data items in this last block can be false

2For an overview of traditional inverted files see [10].
3Obviously, we also stop when we reach the end of a postings list.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

958

positives and have to be checked, all other data items refer-
enced in earlier blocks will satisfy the query predicate and can
be retrieved without checking for false positives. If α is equal
to αi,l−1 we do not have to check the items of block αi,l. Ac-
tually, in this case we do not have to check for false positives
at all.

3.2 Necessity Measure Queries

Processing queries based on the necessity measure can be
done in two different ways, depending on the cardinality of
the domain Ω. For large domains we can simply use possibil-
ity measure queries as a filter (we will call this method ’sim-
plified’ in the following); for small domains we can use the
index described above to determine the answer set (without
accessing the data items themselves).

The inequality N(X) ≤ Π(X) always holds for neces-
sity and possibility measures, i.e. N(c|A(oi)) ≥ α ⇒
Π(c|A(oi)) ≥ α. So instead of directly searching for the data
items that satisfy the query condition c necessarily to the de-
gree α, we search for data items satisfying c possibly. We
retrieve these data items and check if they also satisfy c neces-
sarily. A drawback of this technique is that we introduce false
positives, due to the data items that satisfy c possibly but not
necessarily.

Accessing all the candidates returned by the possibility
measure query in the simplified processing will cause a lot
of random I/O. However, we can use the inverted file in-
dex to help us in sorting out false positives returned by a
possibility measure search. If we can find an ωi for a data
item oj such that max(µc(ωi), 1 − πA(oj)(ωi)) < α, then
we know that A(oj) cannot satisfy c necessarily (more on
this in just a moment, see also Equation 5). Having a value
for µc(ωi) that is greater or equal to α will never result in
max(µc(ωi), 1−πA(oj)(ωi)) < α. So in order to sort out false
positives, we have to access the postings lists of the values ωi

for which µc(ωi) < α. Unfortunately, this means we have to
look up the complement of the values ωi used for the possibil-
ity measure query and scan the corresponding postings lists.4
(Consequently, this will only be efficient for relatively small
domains.) During query processing, we keep scanning such a
postings list in a blockwise fashion as long as αi,l > 1 − α

holds and we stop as soon as this condition is not satisfied any-
more.5 Any references to data items found during this scan
can be safely discarded from the candidates determined by
the possibility measure query. The reasoning is the following:
while αi,l > 1−α, we know that for all data items referenced
in this block πA(oj)(ωi) > 1 − α (⇔ 1 − πA(oj)(ωi) < α)
holds. Together with µc(ωi) < α, this means that A(oj) can-
not satisfy c necessarily. Once αi,l drops below 1 − α, we do
not have enough information to determine whether the data
items referenced in this block (and the following blocks) sat-
isfy c necessarily or not and we stop scanning the list further.
All the data items remaining in the candidate set after scanning
the lists of the ωi for which µc(ωi) < α have to be fetched and
checked for false positives.

4This is why we will also call this approach complement-based.
5Again, we also stop when reaching the end of a list.

3.3 Index Compression
The reason for arranging the references to data items in blocks
is that we can use gap encoding on the ascending sequences
of data item IDs. For example, instead of storing the sequence
103,110,114,116,121 we store 103,7,4,2,5. Compared to ab-
solute ID numbers, relative gaps can be stored using less stor-
age space. However, from time to time even gaps can become
quite large, i.e. a large gap could need almost as much stor-
age space as a regular ID. So that we do not have to allocate
the same space for each gap, we use variable length encoding
[11]. The main idea is to use few bits for small gaps and many
bits for large gaps.

In order to keep the codewords byte-aligned for faster pro-
cessing, we use Variable-Byte (VB) code [12]. Each byte con-
tains a so-called continuation bit, which signals if the end of
the current codeword has been reached or if we have to con-
tinue decoding. Usually the high bit is dedicated to this pur-
pose, while the lower 7 bits of each byte encode gap informa-
tion. If a gap fits into 7 bits, then we encode this gap in the
lower 7 bits and set the continuation bit to 1. Otherwise, we
encode the highest bits of the gap and set the continuation bit
to 0. The remaining bits are encoded in the same manner. VB-
encoding is a good compromise between compression ratio
and processing speed. For example, encoding 5 in VB-code
would result in 10000101, while encoding 824 would result in
00000110 10111000 (where the bits in boldface are the con-
tinuation bits).

Instead of using floating-point numbers for the threshold
levels αi,k directly in the index, we store IDs of threshold lev-
els using a one-byte integer, looking up the floating-point val-
ues in a table mapping the IDs to these values. Due to the fixed
threshold levels we use throughout the whole index, we can do
this. As we will see later in the evaluation section, 256 differ-
ent threshold levels are more than enough. If more than 256
threshold levels should be needed, we can apply VB-encoding
to the threshold levels as well.

4 Comparison to Existing Approach
We use the approach by Bosc and Galibourg [7] as a refer-
ence for comparison. There are two special α-cuts, the core
L1(µF) and the support L>0(µF) of a fuzzy set F . Bosc and
Galibourg have shown that the following implications hold
(for all α > 0):

Π(c|A(oi)) ≥ α ⇒ L>0(πA(oi)) ∩ Lα(µc) �= ∅ (6)
N(c|A(oi)) ≥ α ⇒ L1(πA(oi)) ⊆ Lα(µc) (7)

Given a query condition c we have to determine whether the
α-cut of µc (Lα(µc) intersects with the support of a data item’s
attribute value (for possibility queries) or if the core of the
attribute value is a subset of Lα(µc) (for necessity queries). If
this is not the case, then we can safely discard a data item, as
it will not satisfy the original query condition.

We implemented this technique using the same framework
as for our approach, i.e. using compressed inverted files for in-
dexing the cores and supports of possibility distributions. The
index containing the cores stores the cardinality of each core
together with the reference to the possibility distribution. In

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

959

(a) Possibility measure (b) Necessity measure

Figure 2: False drop rates

this way, superset queries (as described in Equation (7)) can be
answered using an inverted file by filtering out all references
whose cores have a higher cardinality than the query set. For a
more detailed description on how to optimize this kind of data
structure, see [13] (comparisons to other data structures can
also be found in this paper; the inverted file approach, how-
ever, was the data structure with the best performance among
all those that were tested).

5 Experimental Evaluation
5.1 Benchmark Environment
The benchmarks were run on a Pentium 4 (3.2 GHz) PC with
1GByte main memory running Windows XP. The index struc-
tures and a simulator for the storage system were implemented
in Java 1.6. We decided to implement the simulator in Java,
as this makes us platform-independent. The simulator allows
us to avoid unwanted effects due to caching. We set the block
size of the simulator to a page size of 4K, which is the page
size of the underlying operating system.

We generated possibility distributions for the data items us-
ing the following parameters: the domain size (|Ω|) is equal
to 25 and the database size is equal to 100K data items (each
data item is associated with a possibility distribution). The
elements of a particular possibility distribution are taken ran-
domly from the domain, using a uniform distribution. This
means that we first determine the cardinality of the support
of a possibility distribution, which is uniformly distributed in
[1,22] (22 elements cover 90% of the domain). All the ele-
ments in the domain have the same probability of making it
into the support. The membership degrees of the chosen el-
ements are uniformly distributed in (0,1.0]. If a possibility
distribution is not normalized, the highest degree is converted
to 1.0.

In this paper we wanted to focus on typical fuzzy scalar
domains, therefore we decided to keep the domain cardinality
rather small. This is motivated by the fact that the elements of
fuzzy domains usually represent categories. Normally these
categories are determined by experts based on the criteria (1)
that they should be easy to use by ordinary users and (2) that

fuzzy relations (allowing flexible comparisons) can be defined
on them. It is much easier to satisfy both criteria with a small
domain cardinality; that is why typical fuzzy scalar domains
are rather small.

Another important parameter is the clustering of the data
items on disk pages. For the results shown in this paper we
assume a “worst-case scenario” in terms of indexing, meaning
that all the candidate items returned by the index are stored
in consecutive blocks with 64.5 data items sharing a block on
average. This will lessen the effect that false drops have on
the retrieval performance, as we do not need a separate page
access to fetch each of the false drops.

5.2 Results
We were interested in several criteria, most importantly in the
false drop ratio of the two different approaches and its impact
on the query performance. To a lesser extent we also wanted
to make sure that the overhead in terms of the index size is
not prohibitive. Furthermore, we investigate the impact of the
query threshold α on the performance of the indexes. In Sec-
tions 5.2.1 to 5.2.3 our competitor is included as a reference;
the parameter we vary (number of threshold levels) only ap-
plies to our approach in these cases.

5.2.1 False Drop Rate
Figure 2 shows the results we obtained for measuring the false
drop rate for varying the number of threshold levels in our
index (Figure 2(a) depicts the results for possibility measure
queries, while Figure 2(b) depicts those for necessity measure
queries6). Each threshold level covers an equally-sized inter-
val in [0,1]. The false drop rate is measured in the follow-
ing way: (total number of IDs returned by index - number
of true positives)/number of true positives. As can be clearly
seen, adding more threshold levels to the data structure re-
duces the false drop ratio. However, the law of diminishing
returns applies to this, i.e. with each added threshold level the
improvement gain decreases. We can also notice that using a

6The method labeled ’simplified’ applies possibility measures as
a filter, while the other curve shows the results for the complement-
based approach.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

960

(a) Possibility measure (b) Necessity measure

Figure 3: Total number of page accesses

possibility measure as a filter for a necessity measure is not
competitive in this scenario.

5.2.2 Retrieval Performance
While the false drop rate suggests to use a very high number
of threshold levels, it is not as simple as that to determine the
optimal number of threshold levels. By increasing the number
of threshold levels we introduce an overhead in terms of in-
dex size and retrieval performance (larger indexes result in a
longer query processing time). Let us first look at the retrieval
performance of the access methods. Figure 3 shows the re-
trieval performance in total number of page accesses (part (a)
for possibility measure queries and part (b) for necessity mea-
sure queries). The total number of page accesses includes the
page accesses needed to navigate the index and the pages ac-
cessed for retrieving all candidate data items (false and true
positives).

There is a sharp decrease in the number of page accesses
when going from one threshold level to about twenty threshold
levels. This is caused by the rapidly dropping false drop ratio.
Then the curve peters out and slowly goes up again. In this
part of the curve, the drop in performance, due to the afore-
mentioned overhead, gains the upper hand over the slowly de-
creasing false drop rate. In our benchmark scenario we have
identified 25 to be the optimal number of threshold levels for
possibility measure queries and 28 to be the optimum for ne-
cessity measure queries. Again, the approach using the possi-
bility measure as a filter for necessity measure queries is not
competitive, so we will drop it from the graphs in the follow-
ing sections.

5.2.3 Index Size
In Figure 4 we present the size of the index structures in
terms of disk pages. The overhead added for introducing a
larger number of threshold levels can be clearly seen. This
is caused by a deterioration of the compression ratio. A few
larger threshold blocks with smaller gaps between the IDs can
be compressed better than a lot of smaller blocks with larger
gaps. The stair-like appearance is caused by postings lists ex-
panding by one page at roughly the same time (due to the uni-

Figure 4: Index size

form distribution of domain elements in the possibility distri-
butions). At first glance it seems that our index structure needs
more storage space than our competitor. However, as we only
need about 20 to 30 threshold levels, this increase is only mod-
erate and, more importantly, we can answer both, possibility
measure and necessity measure, queries with the same index.
For the other scheme separate indexes are needed (one stor-
ing the supports and one storing the cores of the possibility
distributions).

5.2.4 Impact of Query Threshold
Figure 5 shows the impact of the query threshold (α) on the
performance. Generally, as the query threshold grows for
possibility measure queries (Figure 5(a)), we have to check
smaller and smaller parts of the query set (only elements that
have a membership degree larger than or equal to α have to
be considered). This in turn decreases the number of post-
ings lists we have to traverse, leading to less page accesses. In
addition to this, our approach can stop scanning postings lists
earlier for higher query thresholds, leading to further improve-

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

961

(a) Possibility measure (b) Necessity measure

Figure 5: Impact of query threshold

ment in terms of the number of page accesses.
For necessity measure queries ((Figure 5(b)), things are

more complicated. For the core-filtering approach by Bosc
and Galibourg the number of postings lists we have to scan
decreases with increasing threshold α. For our approach there
are two effects at work. With increasing α the false drop rate
drops, which leads to fewer page accesses due to false posi-
tives. However, with increasing threshold values the number
of page accesses in the index increases. Although the number
and lengths of postings list traversals for the possibility mea-
sure filter step goes down, the number and lengths of postings
list scans for the subsequent complementary check on the ne-
cessity measure goes up at quite a fast rate. At some point this
effect catches up with us and the number of accessed blocks
increases again.

6 Conclusion and Outlook
We have shown how to build an index that stores threshold
levels of possibility distributions in a compact way. Being
able to represent possibility distributions using a much finer
granularity than existing approaches helps us in reducing the
number of false positives significantly. Even in an unfavorable
environment, our index far outperforms existing approaches
for possibility measure queries and was on a par for necessity
measure queries. This kind of performance can already be
achieved by introducing only a moderate number of threshold
levels, meaning that there is practically no overhead, since we
only need to maintain one index (while our main competitor
needs one for possibility measure queries and one for neces-
sity measure queries).

For future work we would like to analyze how to optimize
the number and distribution of threshold levels given a fixed
database. Even more interesting would be to optimize and up-
date the index in a dynamic way, given a database with statis-
tics on query workloads.

Acknowledgments
This work has been partially supported by the “Ministerio de
Ciencia y Tecnologı́a (MCYT)” (Spain) under grant TIN2007-

68084-CO2-01, and the “Consejerı́a de Innovación Ciencia y
Empresa de Andalucı́a” (Spain) under research projects P06-
TIC-01570 and P07-TIC-02611. We also thank the anony-
mous referees for improving the readability of the paper.

References
[1] B. Buckles and F. Petry. A fuzzy model for relational databases.

Fuzzy Sets and Systems, 7(3):213–226, 1982.
[2] R. Caluwe de, editor. Fuzzy and Uncertain Object-oriented

Databases (Concepts and Models), volume 13 of Advances in
Fuzzy Systems - Applications and Theory. World Scientific,
1997.

[3] R. George, A. Yazici, F.E. Petry, and B.P. Buckles. Uncertainty
modeling in object-oriented geographical information systems.
In Third Int. Conf. for Database and Expert System Application
(DEXA), Valencia, 1992.

[4] F. E. Petry and P. Bosc. Fuzzy databases: principles and
applications. International Series in Intelligent Technologies.
Kluwer Academic Publishers, 1996.

[5] H. Prade and C. Testemale. Generalizing database relational al-
gebra for the treatment of incomplete or uncertain information
and vague queries. Information Sciences, 34:115–143, 1984.

[6] J. Galindo, A. Urrutia, and M. Piattini. Fuzzy Databases: Mod-
eling, Design and Implementation. Idea Group Publishing, Her-
shey, PA, USA, 2006.

[7] P. Bosc and M. Galibourg. Indexing principles for a fuzzy
database. Information Systems, 14(6):493–499, 1989.

[8] C.D. Manning, P. Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[9] C. D. Barranco, J. R. Campaña, and J. M. Medina. A B+-tree
based indexing technique for fuzzy numerical data. Fuzzy Sets
and Systems, 159(12):1431–1449, 2008.

[10] R. Sacks-Davis and J. Zobel. Indexing Techniques for Advanced
Database Systems. Kluwer Academic Publishers, 1997.

[11] I.H. Witten, A. Moffat, and T.C. Bell. Managing Gigabytes.
Morgan Kaufmann, San Francisco, 1999.

[12] A. Trotman. Compressing inverted files. Information Retrieval,
6(1):5–19, 2003.

[13] S. Helmer. Evaluating different approaches for indexing fuzzy
sets. Fuzzy Sets and Systems, 140(1):167–182, 2003.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

962

