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Abstract

Following M. Krachounov ([5]), max and min
operations with fuzzy sets are considered in-
stead of Lukasiewicz ones ([6], [7], [8], [9]).
Her the domain F of a probability m : F →
[0, 1] consists on IF-events A = (µA, νA) i.e.
mappings from a measurable space (Ω,S) to
the unit square ([1]). Local representation of
sequences of M -observables by random vari-
ables is constructed and three kinds of con-
vergences are characterized: convergence in
distribution, convergence in measure, and al-
most everywhere convergence.

Keywords: IF-events, M-states, M-
observables.

1 Introduction

Although the notion of an IF set is given uniquelly,
operations on them present a large variety. In this
paper we shall consider max and min operations. First
let us repeat the basic definitions.

Let (Ω,S) be a measurable space. By an IF-event we
mean any pair

A = (µA, νA)

of S-measurable functions, such that µA ≥ 0, νA ≥ 0,
and

µA + νA ≤ 1.

An important notion is the ordering

A ≤ B ⇐⇒ µA ≤ µB , νA ≥ νB .

We shall use the following connectives for a, b ∈ R:

a ∨ b = max(a, b),

a ∧ b = min(a, b).

Hence consider a measurable space (Ω,S), where S is a
σ-algebra of subsets of Ω, F = {A = (µA, νA); µA, νA

are non-negative, S-measurable functions, µA+νA ≤ 1
}. According to [4] we shall define the probability on F
using max-min connectives instead of the Lukasiewicz
connectives,

A ∨B = (µA ∨ µB , νA ∧ νB),

A ∧B = (µA ∧ µB , νA ∨ νB).

For distinguishing the two theories (max and min op-
erations instead of Lukasiewicz operations) we shall
speak about M -probability.

For the first time the probability of an IF-event A =
(µA, νA) was defined in [4] as the interval

P(A) = [
∫

Ω

µAdP, 1−
∫

Ω

νAdP ].

As we have shown in [8] it is a special case of a gen-
eral definition given axiomatically. Of course, also
in the axiomatic approach, the probability A 7−→
P(A) = [P[(A),P](A)] can be reduced to two states
P[,P] : F → [0, 1]. On the other hand the study of
states on IF-events cannot be reduced to two coordi-
nate mappings on fuzzy sets (see Proposition 2.3 and
Example 2.5).

Of course, from the classical point of view the prob-
ability theory has two basic notions: probability, and
random variable, in the non-commutative case state
and observable. This approach in the IF -probability
case is very fruitful. The space of IF-events can be
embedded in a suitable MV-algebra, hence all results
of the MV-algebra probability theory ([11], [12]) can
be applied to the IF-case ([6], [7], [8], [9], [10]).

On the other hand the Krachounov proposal [5] need
probably another approach. Generally probability can
be defined for any t-norm and t-conorm ([2]). Of
course, in this moment we are able to prove the ex-
istence of the joint observable only in the case of
Lukasiewicz connectives and the Zadeh max - min



connectives ([10]). The M-probability theory on IF-
events cannot be reduced to the corresponding theory
on fuzzy sets. On the other hand the obtained results
working for IF-events are new also for M-probabilities
on fuzzy events.

The existence of the joint observable is the key to the
basic assertions of the probability theory. Our paper
anobles to translate some known convergence theorems
of the Kolmogorov theory to the M-probability case.
We present as the main result the translation formu-
las (Theorem 3.3). ¿From the convergence of suitable
sequence of random variables the corresponding con-
vergence of a sequence of M-observables follows. In
Section 2 some notions and preliminary useful results
are presented.

2 States and observables

Definition 2.1 A mapping p : F → [0.1] is called M -
state if the following properties are satisfied:

(i) m((1Ω, 0Ω)) = 1,m((0Ω, 1Ω)) = 0;

(ii) m(A) + m(B) = m(A ∨ B) + m(A ∧ B) for any
A,B ∈ F ;

(iii) An ↗ A,Bn ↘ B =⇒ m(An) ↗ m(A),m(Bn) ↘
m(B).

Definition 2.2 A mapping m : F → [0, 1] is an IF -
state, if the following properties are satisfied:

(i) m((1Ω, 0Ω)) = 1,m((0Ω, 1Ω)) = 0;

(ii) m(A) + m(B) = m(A⊕B) + m(A¯B)) for any
A,B ∈ F ;

(iii) An ↗ A,Bn ↘ B =⇒ m(An) ↗ m(A),m(Bn) ↘
m(B).

Here
A⊕B = (µA ⊕ µB , νA ¯ νB)

A¯B = (µA ¯ µB , νA ⊕ νB)

f ⊕ g = min(f + g, 1),

f ¯ g = max(f + g − 1, 0)

Proposition 2.3 A mapping m : F → [0, 1] is an IF-
state if and only if there exist a probability P : S →
[0, 1] and α ∈ [0, 1] such that

m(A) = (1− α)
∫

Ω

µAdP + α(1−
∫

Ω

νAdP ) (1)

for any A = (µA, νA) ∈ F .

Proof. [8]

Proposition 2.4 Any IF - state is an M-state.

Proof. It follows by Prop.2.3.

Example 2.5 Let T be the tribe of all S-measurable
functions f : Ω → [0, 1]. Let m be an IF-state on
F ,m : F → [0, 1]. Evidently (f, 1− f) ∈ F , hence we
can define the mapping m : T → [0, 1] by the formula

m(f) = m((f, 1− f)).

Evidently m is a state on T , hence by the Butnariu
- Klement theorem ([2]) there exists a probability P :
S → [0, 1] such that

m(f) =
∫

Ω

fdP, (2)

for any f ∈ T . Of course, the formula (2) does not
imply (1), we see that the IF-approach cannot be coor-
dinatwisely reduced to the fuzzy approach.

Example 2.6 Fix x0 ∈ Ω and put

m(A) =
1
2
(µ2

A(x0) + 1− ν2
A(x0)).

Since (µA ∨ µB)2 + (µA ∧ µB)2 = µ2
A + µ2

B , it is not
difficult to see that m is an M -state. Put

µA(x) = µB(x) =
1
4
, νA(x) = νB(x) =

1
2

for any x ∈ Ω. Then

m(A) = m(B) =
13
32

.

On the other hand

A⊕B = ((
1
2
)Ω, 0Ω), A¯B = (0Ω, 1Ω),

hence

m(A⊕B)+m(A¯B) =
5
8
+0 6= 13

32
+

13
32

= m(A)+m(B).

Although the probability theory on IF-events studied
in [6, 7, 8, 9, 10] seems to be satisfactory, the pre-
vious facts lead us to an experience to create basic
instruments for an alternative M -probability theory.
Of course, the crucial notion is the notion of an M -
observable.

Definition 2.7 An M -observable is a mapping x :
B(R) → F satisfying the following conditions:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) x(A∪B) = x(A)∨x(B), x(A∩B) = x(A)∧x(B)
for any A,B ∈ B(R);



(iii) An ↗ A,Bn ↘ B =⇒ x(An) ↗ x(A), x(Bn) ↘
x(B).

Proposition 2.8 If x : B(R) → F is an M -
observable, and m : F → [0, 1] is an M -state, then
m ◦ x : B(R) → [0, 1] is a probability measure.

Proof. Evidently m(x(R)) = m(1Ω) = 1. Also con-
tinuity of m ◦ x is clear. Let A ∩ B = ∅. Then
x(A) ∧ x(B) = x(∅) = (0Ω, 1Ω). Therefore

m(x(A ∪B)) = m(x(A) ∨ x(B)) + m(x(A) ∧ x(B)) =
= m(x(A)) + m(x(B)).

Definition 2.9 Let x, y : B(R) → F be M -
observables. The joint M -observable of x and y is a
mapping h : B(R2) → F satisfying the following con-
ditions:

(i) h(R2) = (1Ω, 0Ω), h(∅) = (0Ω, 1Ω);

(ii) h(A∪B) = h(A)∨h(B), h(A∩B) = h(A)∧h(B)
for any A,B ∈ B(R2);

(iii) An ↗ A,Bn ↘ B =⇒ h(An ↗ h(A), h(Bn) ↘
h(B);

(iv) h(C × D) = min(x(C), y(D)) for any C, D ∈
B(R).

Theorem 2.10 For any M -observables there exists
their joint M observable.

Proof. [10] Theorem 2.2.2.

3 Convergence of M-observables

The aim of the paper is a characterization of sequences
on M -observables by the convergence of random vari-
ables.

Definition 3.1 Let y1, y2, ... be a sequence of M -
observables, yn : B(R) → F , p : F → [0, 1] be an
M -state.

(i) The sequence is said to converge in distribution to
a function F : R → [0, 1] if for each t ∈ R

lim
n→∞

p(yn((−∞, t))) = F (t).

(ii) The sequence is said to converge in measure to 0
if for each ε > 0

lim
n→∞

p(yn((−ε, ε))) = 1.

(iii) The sequence converges to 0 almost everywhere, if

lim
p→∞

lim
k→∞

lim
i→∞

p(
k+i∨

n=k

yn((−1
p
,
1
p
))) = 1.

Definition 3.2 Let x1, ..., xn : B(R) → F be M -
observables, hn : B(Rn) → F be their joint M -
observable, gn : Rn → R be a Borel function. Then
we define gn(x1, ..., xn) by the formula

gn(x1, ..., xn) = hn ◦ g−1
n .

It is easy to see that the mapping yn : B(R) → F is
an M -observable.

Theorem 3.3 Let (xn) be a sequence of M -
observables, xn : B(R) → F , hn : B(Rn) → F their
joint M -observables (n = 1, 2, ...), gn : Rn → R Borel
functions, yn = gn(x1, ..., xn), n = 1, 2, .... Then there
exists a probability space (X,S, P ) and a sequence
(ξn) of random variables, ξn : X → R such that if
ηn = gn(ξ1, ..., ξn), n = 1, 2, ...), then

(i) the sequence y1, y2, ... converges in distribution to
a function F if and only if so does the sequence
η1, η2, ...;

(ii) y1, y2, ... converges to 0 in measure p if and only
if η1, η2, ... converges to 0 in measure P ;

(iii) if η1, η2, ... converges P -almost everywhere to 0,
then y1, y2, ... converges p-almost evrywhere to 0.

Proof. Put X = RN .S = σ(C), where C is the family
of all cylinders in RN . Put pn = p◦hn. Then {pn; n ∈
N} form a consistent family of probability measures
pn : B(Rn) → [0, 1], i.e.

pn+1(A×R) = pn(A), A ∈ B(Rn), n = 1, 2, ...

By the Kolmogorov theorem there exists exactly one
probability measure P : σ(C) → [0, 1] such that

P ◦ π−1
n = pn, n = 1, 2, ...

where πn : RN → Rn is the projection. Put

ξn : RN → R, ξn((ui)∞i=1)) = un, n = 1, 2, ...

Then

P (η−1
n (A)) = P ((gn(ξ1, ..., ξn))−1(A)) =

P (π−1
n (g−1

n (A))) = p(hn(g−1
n (A))) = p(yn(A))

Therefore

p(yn(−∞, t)) = P (η−1
n (−∞, t)),



p(yn((−ε, ε))) = P (η−1
n ((−ε, ε))),

what implies (i) and (ii). Let now ηn converges to 0
P -almost everywhere. We have

P (
k+i⋂

n=k

η−1
n ((−1

p
,
1
p
))) =

p(hk+i(
k+i⋂

n=k

{(t1, ., , , tk+i) : gn(t1, ..., tn) ∈ (−1
p
,
1
p
)})) ≤

≤ p(
k+i∧

n=k

hk+i({(t1, ..., tk+i) : (t1, ..., tn) ∈ g−1
n ((−1

p
,
1
p
))})) =

= p(
k+i∧

n=k

hn ◦ g−1
n ((−1

p
,
1
p
))) =

= p(
k+i∧
n=1

yn((−1
p
,
1
p
))).

Therefore

1 ≤ lim
p→∞

lim
k→∞

lim
i→∞

p(
k+i∧

n=k

yn((−1
p
,
1
p
))) ≤ 1,

hence (yn)∞n=1 converges to 0 p-almost everywhere.
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