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Abstract

Fuzzy relations on the same domain are
classified according to the equality of
families of cut sets. This equality of
fuzzy relations is completely character-
ized, not only for unit interval valued
fuzzy relations, but more generally, for
fuzzy relations whose domain is a (com-
plete) lattice. Similar results for fuzzy
sets in general are considered in [12].
Applications of the results for fuzzy con-
gruence relations are also presented.
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1 Lattice valued fuzzy relations

Fuzzy relations are considered as mappings from
a direct product of sets into a complete lattice
L. Most of the results are deduced for the direct
product of two sets, although they are valid for
the product of any finite family of sets. L can be
the unit interval [0, 1] of real numbers, and in this
case we obtain ordinary fuzzy relations. However,
we consider the general case where L is any com-
plete lattice. Such relations are called L-fuzzy
relations, or lattice valued fuzzy relations.
The most often considered special case of fuzzy
relations is the one when two sets in the direct
product are equal. In this case, we call a fuzzy
relation R : X ×X → L, a fuzzy relation on X.

If R : A×B → L is a fuzzy relation on sets A and
B, then for p ∈ L, the set Rp := {(x, y) ∈ A×B |
R(x, y) ≥ p} is a p-cut, or a cut relation of R.

The collection of all cut relations of R is denoted
by RL, that is, RL := {Rp | p ∈ L}.
The following is a known property of fuzzy rela-
tions.

Proposition 1 Let R : A × B → L be a fuzzy
relation on A and B. Then the collection RL =
{Rp | p ∈ L} of cut relations of R is a complete
lattice under the set inclusion.

In the following, an equivalence relation on L is
introduced, related to cuts of a fuzzy relation R :
A×B → L:

Let ≈ be a binary relation on L, such that for
p, q ∈ L

p ≈ q if and only if Rp = Rq.

By R(A × B) we denote the set of images of a
fuzzy relation:

R(A× B) = {p ∈ L | p = R(x, y), for some x ∈
A, y ∈ B}.
The following proposition gives a characterization
of the relation ≈. As usual, we denote by ↑p the
principal filter in a lattice L, generated by p ∈ L:

↑p := {x ∈ L | p ≤ x}.
Proposition 2 If R is a fuzzy relation on A and
B and p, q ∈ L, then

p ≈ q if and only if ↑p∩R(A×B) = ↑q∩R(A×B).

The relation ≤ in the lattice L induces an order
on the set of equivalence classes modulo ≈, i.e.,
on L/≈, in the following way: for p, q ∈ L, let

[p]≈ ≤ [q]≈ if and only if

↑q ∩R(A×B) ⊆ ↑p ∩R(A×B). (1)



It is not difficult to prove that the above relation
≤ is an ordering relation on L/≈. This partially
ordered set is anti-isomorphic with the poset of
cut sets of R considered under inclusion.

Proposition 3 If R is an L-fuzzy relation on A×
B, then:

[p]≈ ≤ [q]≈ if and only if Rq ⊆ Rp.

Since the mapping p 7→ ∨
[p]≈ (p ∈ L) is a closure

operation on L, L/≈ is a quotient in L. Therefore,
we have the following proposition.

Proposition 4 Let R : A×B → L be an L-fuzzy
relation. Then the poset (L/≈,≤) is a lattice,
anti-isomorphic with the lattice (RL,⊆) of cuts
of R.

2 Equivalence of fuzzy relations

Let L be a complete lattice, A and B nonempty
sets, and RL(A × B) the collection of all fuzzy
relations on A and B whose co-domain is L.

Let

LR := ({↑p ∩R(A×B) | p ∈ L},⊆).

LR consists of particular collections of images of
R in L and it is a poset under inclusion.

Proposition 5 If R : A × B → L is a fuzzy re-
lation on A × B, then the poset LR is a lattice
which is isomorphic with the lattice RL of cuts of
R.

Let RL(A × B) be the set of all lattice valued
fuzzy relations on sets A and B, where L is a fixed
complete lattice. RL(A × B) is a lattice itself,
under the natural order, induced by the one from
the lattice L:

if R, S ∈ L(A×B), then R ≤ S if and only if for
each (x, y) ∈ A×B, R(x, y) ≤ S(x, y).

Since for an infinite lattice there are infinitely
many fuzzy relations even if A and B are finite
sets, it is essential to build a natural classification
of elements in the set RL(A×B).

In the following we introduce an equivalence rela-
tion on the set RL(A×B), which turns out to be
the foundation of the mentioned classification.

Definition

Let ∼ be the relation on RL(A × B), defined as
follows:

R ∼ S if and only if the correspondence f :
R(x, y) 7→ S(x, y), (x, y) ∈ A × B is a bijection
from R(A × B) onto S(A × B) which can be ex-
tended to the isomorphism from the lattice LR

onto the lattice LS , given by the map

F (↑p ∩ R(A × B)) :=↑∧{S(x, y) | S(x, y) ≥ p} ∩
S(A×B), p ∈ L. (∗)
Observe that we extend a correspondence from
L to L to the correspondence from a family of
subsets of L to a family of subsets of L. The
extension means that for every (x, y) ∈ A×B, we
consider the set ↑R(x, y)∩R(A×B) instead of an
element R(x, y) ∈ L.

It is easy to prove that the map F is well defined.

Proposition 6 The relation ∼ is an equivalence
relation on RL(A×B).

If R ∼ S, then the fuzzy relations R and S on
A×B are said to be equivalent.

In the paper [6] the notion of equivalence of fuzzy
sets (on [0, 1] real interval) is defined in the fol-
lowing way:

Two fuzzy sets on the same set X are equivalent
if for all x, y ∈ X

µ(x) < µ(y) if and only if ν(x) < ν(y) and µ(x) =
0 if and only if ν(x) = 0.

In the mentioned paper it is proved that for fuzzy
sets with the unit interval co-domain and with
finite images, this condition is equivalent with the
condition that µ and ν have equal families of cut
sets.

However, such an equivalence does not hold for
unit interval valued fuzzy sets with arbitrary im-
ages, and for lattices valued fuzzy sets it fails even
in finite case. In the paper [12] a new condition
for equality of fuzzy sets is introduced for fuzzy
sets in general. Here we state that the condi-
tion analogous to the one from the paper [6] is a
consequence of the equivalence of fuzzy relations
introduced here.

Proposition 7 Let R, S ∈ RL(A × B) and R ∼



S. Then for all x, z ∈ A and y, t ∈ B,

R(x, y) ≤ R(z, t) if and only if S(x, y) ≤ S(z, t).
(∗∗)

If R and T are fuzzy relations with finite number
of values in the interval [0, 1], the above condition
(∗∗) is also sufficient in order for R and T to be
equivalent, which is a consequence of the results in
[6]. The counter-example in case of lattice valued
fuzzy sets is given in [12].

Another difference with the results in [6] is that
we do not formally distinguish between the bot-
tom (0) and any other element p of the lattice L.
Therefore, we do not require (as in [6]) that the
supports of equivalent fuzzy sets coincide, since 0-
cut is a function like any other p-cut, p ∈ L. How-
ever, the results would be very similar if we had
transformed the present conditions to the ones in
which the corresponding supports for fuzzy sets
(or relations) were equal.

The following theorem is a direct consequence of
the theorem proved in [12] for lattice valued fuzzy
sets.

Theorem 1 Let R, S : A× B → L be two fuzzy
relations. Then R ∼ S if and only if fuzzy rela-
tions R and S have equal families of cut relations.

3 Equivalent fuzzy similarity and
ordering relations

The above considerations can be applied to some
special classes of fuzzy relations, in particular on
fuzzy similarity and fuzzy ordering relations.

We will just briefly recall notions of a lattice val-
ued fuzzy similarity relation and a lattice valued
fuzzy ordering relations.

An L-valued relation S on X (i.e., a mapping from
X2 to L) is a similarity relation (fuzzy equiv-
alence) on X if it is

reflexive: S(x, x) = 1, for every x ∈ X (1 is a
top element of L);

symmetric: S(x, y) = S(y, x), for all x, y ∈ X;

transitive: S(x, y) ∧ S(y, z) ≤ S(x, z), for all
x, y, z ∈ X.

If S is reflexive and transitive, then it is an L-

valued quasi-ordering relation on X.

An L-valued fuzzy relation S on X is fuzzy or-
dering relation if it is reflexive, transitive and

anti-symmetric: S(x, y) ∧ S(y, x) = 0, where 0
is the bottom element of the lattice.

It is well known and easy to prove that every cut
relation of a similarity relation is a crisp equiv-
alence relation on A and also every cut relation
(except the 0-cut) of a fuzzy ordering relation is
a crisp ordering relation on A.

Fuzzy similarity and ordering relations are impor-
tant in many applications. Every such fuzzy rela-
tion uniquely determines a family of crisp equiv-
alences or a family of crisp ordering relations.
Fuzzy relations are essentially equivalent when
they possess the same cut relations. Therefore,
the consequences of Theorem 1 says when two
fuzzy similarity and two fuzzy ordering relations
are equivalent.

Corollary 1 Let R, S : A2 → L be two fuzzy
similarity relations. Then R ∼ S if and only if
R and S have equal families of cut equivalence
relations.

Corollary 2 Let R, S : A2 → L be two fuzzy or-
dering relations. Then R ∼ S if and only if fuzzy
sets R and S have equal families of cut ordering
relations.

Example. By the tables below, we present two
L-valued equivalence relations R,S on the set X,
where X = {x, y, z, t}, and L is the lattice in Fig.
1.

R x y z t

x 1 c e 0
y c 1 0 0
z e 0 1 g
t 0 0 g 1

S x y z t

x 1 b f 0
y b 1 0 0
z f 0 1 a
t 0 0 a 1
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Cut-sets of these equivalence relations are crisp
equivalences, given in the sequel by two collec-
tions of the corresponding partitions:

RL : SL :
R1 = {{x}, {y}, {z}, {t}} S1 = {{x}, {y}, {z}, {t}}
Rg = {{x}, {y}, {z, t}} Sg = {{x}, {y}, {z}, {t}}
Rb = {{x}, {y}, {z}, {t}} Sb = {{x, y}, {z}, {t}}
Rc = {{x, y}, {z}, {t}} Sc = {{x, y}, {z}, {t}}
Ra = {{x}, {y}, {z, t}} Sa = {{x}, {y}, {z, t}}
Rd = {{x, y}, {z, t}} Sd = {{x, y}, {z, t}}
Re = {{x, z}, {y}, {t}} Se = {{x}, {y}, {z}, {t}}
Rf = {{x, z}, {y}, {t}} Sf = {{x, z}, {y}, {t}}
R0 = {{x, y, z, t}} Sf = {{x, y, z, t}}
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RL = SL
∼= LR

∼= LS

Figure 2

These collections of cut-sets coincide, forming a
lattice under the order dual to inclusion. It is easy
to check that this lattice is isomorphic with both,
LR and LS , since R ∼ S. All these isomorphic
lattices can be represented by the diagram in Fig.
2.
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