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Summary

This paper introduces a new definition of
fuzzy closure operator called Implicative Clo-
sure Operators. The Implicative Closure Op-
erators generalize some notions of fuzzy clo-
sure operators given by differents authors.
We show that the Implicative Closure Oper-
ators capture some usual Consequence Rela-
tions used in Approximate Reasoning, like the
Approximation and Proximity entailments
defined by Dubois et al. [5] and the Natural
Inference Operator defined by Boixader and
Jacas [1].
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1 Introduction

In the last years, many works have been devoted to
extend the notions of closure operators, closure sys-
tems and consequence relations from two valued logic
to many valued logic. The best well-known approach
to many-valued closure operators is due to Pavelka
[11]. He defines such operators (in the standard sense
of Tarski) as mappings from fuzzy sets of formulas to
fuzzy sets of formulas, 1.e.,

Definition 1 ( Fuzzy Closure Operator)

A Fuzzy Closure Operator on a language L is a map-
ping C : F(L) — F(L) fulfilling, for all A, B € F(L),
the following properties:

C1) fuzzy inclusion: A C é’(A)

C2) fuzzy monotony: if A C B then é’(A) C C'(B)
C~'3) fuzzy idempotence: é(é’(A)) C é(A)

where (L, A, V,0,1) is a complete lattice with minimum
0 and mazimum 1 and F(L) denotes the the fuzzy

power set (i.e. the set L* of all fuzzy subsets) over
a language L.

On the other hand, Chakraborty extends in [4] the con-
cept of consequence relation by defining Graded Conse-
quence Relations as fuzzy relations between crisp sets
of formulas and formulas.

Definition 2 (Graded Consequence Relation)
A fuzzy relation g. : P(L) x L — L is called a Graded
Consequence Relation if, for every A, B € P(L) and

p,q € L, gc fulfills:

gcl) fuzzy reflexivity: g.(A,p) =1 forallpe A

gc2) fuzzy monotony: If B C A then g.(B,p) <
9e(A, p)
03) fuzy cut: (infuep go(A ) © go(A U B.p) <

gc(A, p), where @ is a t-norm operation on L

where P(L) denotes the classical power set over a lan-
guage L

In [8] Gerla examines the links between Fuzzy Closure
Operators and Graded Consequence Relations. Castro
et al. point out in [3] that several methods of approx-
imate reasoning used in Artificial Intelligence are not
covered by Graded Consequence Relations and they in-
troduce a more general concept of Fuzzy Consequence
Relation.

Definition 3 (Fuzzy Consequence Relation)
Any fuzzy relation § : F(L)x L — L is called a Fuzzy
Consequence Relation if the following three properties

hold for every A, B € F(L) and p,q € L:

g1) fuzzy reflexivity: A(p) < g(A, p)
§2) fuzzy monotony: If B C A then §(B,p) < §(A,p)

§3) fuzzy cut: If for all p, B(p) < G(A,p), then for all
g, J(AUB,q) <3(4,9q)



Notice that the Fuzzy Closure Operators and the Fuzzy
Consequence Relations are related by the following
properties:

o If C'is a Fuzzy Closure Operator then, g(A,p) =
C(A)(p) is a Fuzzy Consequence Relation.

o If g is a Fuzzy Consequence Relation then, é(A) =
g(A,.) is a Fuzzy Closure Operator.

On the other hand a Fuzzy Closure Operator C on
F(L) induces a Closure System C on F(L) defined by

C={TeF(L)|CT) =T}

And conversely, every closure system C in F(£) induces
a fuzzy closure operator C' on F (L) defined by

CA)y = N\{rec|a<T}.

In this paper we generalize, for fuzzy sets of formu-
las, Chakraborty’s Graded Consequence Relations by
defining what we call Implicative Consequence Re-
lations, which generalize, at the same time, Castro
et al’s Fuzzy Consequence Relations. From these
Implicative Consequence Relations we introduce and
study their corresponding Implicative Closure Oper-
ators and Closure Systems. Finally we show that
Implicative Consequence Relations also capture some
well-known approximate entailments like the Approx-
imation and Proximity entailments introduced by
Dubois et al. in [5] and the Natural Inference Operator
defined by Boixader and Jacas in [1].

2 Implicative Closure Operators

We are interested in a generalization of Graded Con-
sequence Relations over fuzzy sets of formulas. There-
fore, we introduce a new kind of fuzzy consequence
relations that will be called Implicative Consequence
Relations, since we will give the Fuzzy Cut property
by means of an implication operation — on L. Thus
we extend the lattice (L, A,V,0,1) to a complete BL-
algebral, i.e. a structure (L,A,V,®,—,0,1) where
(L, A, V, 0, 1)is a complete distributive lattice, (L, ®, 1)
is a commutative monoid, (®, —) is a residuated pair,
1.e. they verify

zr®y<zifand only if z < y — z,

and for all ,y,z € L, it holds that x Ay = 2 ® (# — y)
and (z — y)V(y — x) = 1. The operation — is usually
called residuated implication.

! B L-algebras are introduced by Héjek in [9] as the alge-
braic counterpart of the so-called Basic Fuzzy Logic, which
is the logic of continuous t-norms.

Definition 4 (Implicative Cons. Relation)

A fuzzy relation g. : F(L) x L — L is called an
Implicative Consequence Relation f, for every A, B €
F(L) and p,q € L, ge fulfills:

gel) fuzzy reflexivity: A(p) < ge(A,p)

§c2) fuzzy monotony: If B C A then §.(B,p) <

ge(A,p)

§e3) fuzzy cut: [infoer(Blg) — de(4,9))] © g.(A U
B,p) < ge(A,p)*?

It is easy to prove that Graded Consequence Relations
are a particular case of Implicative Consequence Re-
lations. In fact, the main difference is to consider a
graded fuzzy inclusion instead of an strict fuzzy inclu-
sion in the cut property.

Implicative Consequence Relations also have a repre-
sentation theorem which is a generalization of the one
given in [4] for Graded Consequence Relations.

Theorem 1 A fuzzy relation g : F(L) x L — L is
an Implicative Consequence Relation if, and only if,
there exists a family of fuzzy sets {T;}ier salisfying
ge(A, p) = infi{[infoec Alq) = Ti(q)] = Ti(p) }-

The fuzzy sets {T;};cr defining the Implicative Conse-
quence Relation g, in the sense of the above theorem,
will be called generators of g..

From the above theorem, it is easy to prove that any
Implicative Consequence Relation satisfies the next ad-
ditional property:

J4) Ge(A®@ k,p) > g.(A,p) @k,

where k is the constant fuzzy set such that all the ele-
ments of £ belong to it with value k.

The Fuzzy Closure Operators corresponding to Im-
plicative Consequence Relations, which we shall call
them Implicative Closure Operators, are characterized
by the properties: C1,C2, C'3, and

C) Ce(A@k)(p) > Ce(A)(p) @ k.

Property C~'4) is already mentioned by Gerla in [8] for
the case when A is a crisp set and ©® = min. The follow-
ing theorem characterizes I'mplicative Closure System
corresponding to Implicative Closure Operators.

Theorem 2 A closure system C_, in F(L) is an Im-
plicative Closure System if and only if, for any £ € C_,
and foranyk e L, k> FE (.

>This axiom could be also presented as g.(A U B,p) <
(infoec(B(a) = ge(A,q))) = ge(A, p)



We end this section by mentioning that Implicative
Closure Operators satisfy a further property:

C5) Coherence: Ce(A)(q) > Ce({p}) () @ A(p),

where {p} denotes a singleton, i.e. {p}(p) = 1 and
{r}(¢) = 0 otherwise. This property already appears
in [2] where it is proved that if a closure operator sat-

isfies C'5 then C’c({p})(q) defines a fuzzy preorder in L.

Actually, it is easy to prove the following proposition.

Proposition 1 If C. is an Implicative Closure Oper-
ator with generators {T;};cr, then it holds

Co({ph(e) = Zilelﬁ{Ti(p) — Ti(q)}.

Notice that the family {T; };e; is a family of generators
of the fuzzy preorder R(p | ¢) = C.({p})(q).

3 Closure Operators defined by a
fuzzy preorder

Different authors (see for instance [2]) have studied the
so-called Fuzzy Closure Operators defined by a fuzzy
preorder.

Definition 5 Guven a fuzzy preorder R: L X L+—— L
on the language L, the associated Fuzzy Closure Oper-
ator C'r 1s defined by:

Cr(A)(q) = Ve {R(g | p) © A(p)}.

The mapping Cr provides, for every fuzzy set h , the
least extensional fuzzy set (w.r.t. R) containing h, and
it is proved in [10] that it satisfies the following prop-
erties:

e C1: h < Cgr(h)
éR(\/iEI hZ) = \/iEI éR(hi)
o C3: é’RoéR:éR

o C2:

e C4: Cr(k) =k
e C5%: Cr({g} @ k) =Criq} 0k
e C6%: C(hok)=Ch)ok

where {¢} denotes a singleton and k the constant fuzzy

set k(q) = k, for all ¢ € L.

The following remarks can be easily proved:

e C2 implies fuzzy inclusion property

e in the presence of C2, C5% is equivalent to C6%

e C6% implies C4

In [7] Esteva et al. prove that a Fuzzy Closure Operator
is generated by a fuzzy preorder (in the sense of above
definition) if, and only if, it satisfies C1-C5%. On
the other hand the closure system associated to these
Fuzzy Closure Operators is the set of generators of the
fuzzy pre-order R (see [10]). This closure system is
characterized by the following properties:

1) it is closed under arbitrary unions, and

2) for any fuzzy set I € C_, and for any element k € L,
it holds that k > E, k@ F € C_,.

Taking into account this characterization and the
above definition, the following theorem holds.

Theorem 3 A Fuzzy Closure Operator defined by a
fuzzy preorder R is the minimal Implicative Closure
Operator C, such that C’c({q})(p) = R(q | p), for any
p,q € L.

4 Implicative Closure Operators and
aproximate reasoning

In [6], given a similarity relation S on the set € of
boolean interpretations of a propositional language £,
a fuzzy set p* on , called approximately p, is associ-
ated to each proposition p € £ in the following way:

p*(w) = sup, e, S(w, w').

From this definition, Dubois et al. define in [5] two
graded consequence relations on £ x L.

Definition 6 (Approximate Cons. Relation)

For each p,q € L, we define p E* q iff Is(q | p) =
Infy=p SUPy /=g S(w,w') > a.

Definition 7 (Proximity Cons. Relation)
For each p,q € £ and each K C L, we define p Efq
iff Jsx(q | p) =infyk p*(w) = ¢*(w) > a.

In [5] it is proved that Is(q | p) = Jsv(¢ | p),
where T stands for a boolean tautology, i.e. any for-
mula whose set of models is the whole set €2. In our
framework, the Approximate and Proximity Conse-
quence Relations can be obtained as Implicative Clo-
sure Operators. Indeed, consider the family of fuzzy
sets F' = {wW}yeq, where for each w € €, the fuzzy
set w: L — [0,1] is defined by @(q) = ¢*(w). Now
define, for all A € [0, 1]%,

Ce(A)g) = ggg(;gﬁ(z‘l(p) — w(p))) — @(q)).



An easy computation shows that C'Né‘ {ph(g) = Js1(q |
p) = Is(¢ | p) and we obtain the Approximate Con-
sequence Relation. Moreover, if we consider now the
family of fuzzy sets to be F' = {0}k, for a subset
K C L, then what we obtain is C’E‘({p})(q) = Jsx(q]
p), that is, the Proximity Consequence Relation.

In [1] Boixader and Jacas analyze “...approximate rea-

soning through extensionality with respect to the natu-
ral ®-indistinguishability operator, by considering the
indistinguishability level between fuzzy sets as a for-
mal measure of their degree of similarity,...”. For
this purpose, they introduce a family of operators
I:00,1]Y —=1[0,1]", where U and V are universes of
discourse. These operators are called extensional in-
ference operators if they preserve the pointwise order,
ie. if A; <y As then I(A;) <y I(As), and satisfy ®-
extensionality, i.e. Ef (A1, As) < EY(I(A1), I(As)),
where E[Q}) 1s the similarity function defined by

Eg(Al,Az) = ;Ielg Al(l‘) vV Az(l‘) — Al(l‘) A Az(l‘)

and analogously for E‘Q}) Moreover, they prove that it
1s possible to associate to any fuzzy rule “If A then B”
the so-called Natural Inference Operator, which is the
optimal from the extensionality point of view.

Definition 8 (Natural Inference Operator)
Given the rule “If A then B” with A € [0,1]Y and
B € [0,1]Y, the Natural Inference Operator Ixp
[0,1]Y = [0, 1]V associated to this rule is defined by

Lap(A)(v) = [inf (4"(w) = A(u))] = B(v).

Theorem 4 ([1, Theorem 15]) The Natural Inference
Operator associated to the rule “If A then B’ is the
least specific inference operator satisfying:

o Iap is ertensional,

. jAB(A) =B,

o I4p(A) >y B, for any A" € [0, 11Y. Moreover, if
A/ SU A, then IAB(A/) =B

Now we are in position to show that Implicative Clo-
sure Operators (. are Natural Inference Operators. In
fact, for any C. there exists a family {T;};cs such that

Ce(A)(p) = inf{[inf Alg) = Ti(9)] = Ti(p)}

If we take U = V = L, it is obvious that, for each T;,
the operator I; defined as

1i(A)(p) = [qigg Alq) = T;(9)] = Ti(p)

is the Natural Inference Operator on £ associated to
the rule “if T; then T;”, and thus the following theorem
holds.

Theorem 5 Implicative Closure Operators are Natu-
ral Inference Operators.

Moreover, our representation theorem 1 should be seen
as a particular case of the representation theorem in
[1]. Thus, the operators C, are always extensional in
the above sense. Finally, remark that closure oper-
ators coming from a ®-transitive fuzzy preorders are
obviously ®-extensional. But, in general, we can only
assure that closure operators are min-extensional.

Proposition 2 Let C be the closure operator defined
by the family of fuzzy sets {T:hier by C(A)(p) =
inf{T;(p) | AC T;}. Then C is min-extensional.

However, this result 1s not true in general for t-norms
different of min, indeed there are examples that are not
Lukasiewicz-extensional.
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