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We present a knowledge based supervised
classification method. Our modelisation is
based on automatic generation of
classification rules. The classification
function is directly given in the form of
production rules base.
The proposed learning method is multi-
features, it allows to take into account the
possible predictive power of a
simultaneously considered features
conjunction. On the other hand, the feature
space partition allows a multi-valued
representation of the features and data
imprecision integration. The rules
conclusions are accompanied by belief
degrees. This uncertainty is managed in the
learning phase as well as in the recognition
one. To introduce more flexibility and
overcome the boundary problem due to the
discretisation, we propose to use
approximate reasoning. We introduce, in
this purpose, an adequate distance to
compare neighboring facts. This distance,
measuring imprecision, combined with
uncertainty of classification decisions
represented by belief degrees, drives the
approximate inference.
The proposed method was implemented in a
tool called SUCRAGE and confronted with
a real application in the field of image
processing. The obtained results are very
satisfactory. They validate our approach and
allow us to consider other application fields.

�'&(��")	� supervised classification,
approximate reasoning, imprecision and
uncertainty treatment, image processing.
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Facing the increase of data amount recorded daily, the
detection of both structures and specific links between
them, the organisation and the search of exploitable

knowledge in this information become a strategic
stake for decision holding and prediction task.
This complex problem, also known as « Data
Mining » has multiple aspects. We focus on one of
them : supervised learning. We propose a learning
method from examples situated at the junction of
statistical methods and those based on Artificial
Intelligence techniques. Our modelisation is based on
automatic generation of classification rules. The
classification function is directly given in the form of
production rules base. This ensures the transparency
and easy interpretation of the classifier.

The construction of production rules ��� �����	
��
���� �������
	��� using the knowledge and the
know-how of an expert is a very difficult task. The
complexity and cost of such a knowledge acquisition
have led to an important development of learning
methods used for an automatic knowledge extraction
[9] [7].
In the pattern recognition domain, expert’s rules allow
to determine the belonging of a pixel to a class. For
instance, in a human thigh cryosection image a pixel
will be classified as bone, muscle, ... In the medical
domain, it is practically impossible to obtain from an
image classification given by a medical specialist a
coherent and complete set of rules. The only trusted
informations he can give us, are relations between
pixels and classes such as Pi∈Cj, where Pi is a pixel
and Cj is a class defined by the domain specialist. A
learning method based only on such information
allows to limit mistakes during knowledge
acquisition. Therefore, starting from the expertise
given by a medical expert such as Pi∈Cj, we propose
to build classification rules automatically. So, we
present an image classification system based on a
supervised learning method. Our package is
composed by two sub-systems. The first one, the
generator, ensures the learning phase by automatic
rules construction : « knowledge acquisition » from
training pixels is automatic. The proposed learning
method is multi-features, it allows to take into account
the possible predictive power of a simultaneously
considered features conjunction. The feature space
partition allows a multi-valued representation of the



features and data imprecision integration. The second
sub-system, the inference engine, uses these rules to
classify new pixels. To introduce more flexibility and
overcome the boundary problem due to the
discretisation, we propose to use an approximate
reasoning. The proposed approximate reasoning, used
as an inference mode, allows to manage imprecise
knowledge as well as rules uncertainty.
The proposed method was implemented in a tool
called SUCRAGE and confronted with a real
application in the field of image processing (multi-
components image segmentation). The obtained
results are very satisfactory. They validate our
approach and allow us to consider other application
fields.
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One of the particular interest of our work consists in
this base of rules automatically constructed. To
achieve this goal, the picture processing expert
represents a pixel by a vector : each pixel feature
corresponds to a vector component. We have then a
set of classified vectors, the training set, that we use
to build the base of rules.
Let C1, ..., Cc be the possible classes defined by the
medical expert. Let X1, ..., Xn be the components of
the vector representing the pixel features. The
generated rules are of the type :

��	#,"	��	#,"	���	#,"	��	⎯⎯→	��	α

where Ai is a condition of the form : Xj is in [a,b], Xj

is the jth vector component, the interval [a,b] is issued
from the discretization technique. Following
Vernazza [15] and Ginsberg [6], we introduce, by this
discretization, a multi-valued representation of
knowledge. C is a hypothesis about membership in a
class with a belief degree α.
The building of the premises of the production rules is
realized by linear correlation search among the
training set elements [5]. To determine the grouping
of components of different rules, we use the
correlation matrix M=(ri,j)n*n, where rij is the
coefficient of linear correlation between Xi and Xj

vector components. To decide which components are
correlated, we define a threshold θ, and we consider
that (Xi) and (Xj) are independent if |rij|<θ. So, high
correlated components are grouped in the same
premises.
Then, to determine the interval [a,b], we decompose
the global range of a component into a finite number
M of sub-ranges of equal width. Premises of the rules
are obtained by considering for each correlated
components subset, an interval for each component in
all possible combinations [3].
As in most applications, picture recognition is

concerned with uncertainty [8] [10]. In fact, the
conclusion parts of the rules are hypotheses about
membership of a given class. Each hypothesis is
accompanied by a belief degree α that can be
computed by different methods (probability [11],
certainty factors [13] or possibility degree [16]).
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The rules were built for the purpose of a further
classification use. In fact, an inference engine will
exploit the base of rules to classify new pixels. The
main difference between our system and more
classical ones is in the treatment of uncertainty.
Moreover, the originality of our model is not only in
the management of uncertainty but especially in the
taking account of imprecision. In fact, we propose
two reasoning models. The first one, called �����
���
��	�� allows the inference engine to fire only the
rules with which the new pixel components match
exactly. The second, called ������	����� ���
��	��
consists in firing also some neighborhood rules, and
consequently treats imprecision [4]. This kind of
approximate reasoning manipulates concepts
developed in works related to uncertainty
management techniques such us multi-valued logic
[1], fuzzy logic [16],... and more particularly uses the
neighborhood degree and distance between
observations and premises. Our modelisation
corresponds to the Generalized Modus Ponens
schema. In our particular case, it is expressed by the
following diagram :

�A1 and A2 and ...and An ��           B with a belief degree  α

A’1  is nearly A1

A’2  is nearly A2...

A’n  is nearly An

   B with a belief degree α’
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In order to be productive, we need to formalize the
neighboring notion, which allows to take observation
imprecision into account. The conclusion degree α’ of
above schema, must be a function of both observation
imprecision and rule uncertainty.
The approximate inference is only possible when a
meta-knowledge exists in the system and allows it to
run. In our case the meta-knowledge gives the
possibility to bind imprecision (observation and
premise of rule) to uncertainty (conclusion degree).
This meta knowledge, fundamental in approximate
reasoning, has two important aspects :
1. A weak difference between observation and
premise induces that the conclusion part is not



significantly modified. For every rule, a stability area
exists around the premise of the rule. This is a quality
that we have to find in any approximate reasoning.
2. If the distance between observation and premise
increases, then uncertainty of the conclusion increases
too. A maximal distance must give a complete
uncertainty.
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To assess the proximity between an observation and a
premise, we introduce a local distance between an
element of observation (A’i) and an element of
premise (Ai).
In our application, rule premise (Ai) associates
discrete values to pixel components. But observations
(A’i) are pixels with numerical values. Two kinds of
solutions exist for computing distance between Ai and
A’i. The first consists in extracting expertise in order
to obtain an estimation of symbolic distance. Such an
expertise extraction seems very hard to us. The
second kind of solution, that we use, consists in a
numerical-symbolic interface [4].
These local distances are then aggregated into a
global distance that reflect the closeness between
premise and observation.
In order to take into account the values dispersion, we
don’t use tools like min-max functions. We are
interested only by the measure of neighboring facts,
that is facts which are not too distant. Thus, it is
necessary to use an aggregated distance that is very
sensitive to little variations of neighboring facts. We
propose for that a global distance that measures
proximity between approximately equal vectors [4].
This distance is insensitive when facts are very far
and is a representation of neighboring-dispersion
values. We note that the approximate inference can
only be realized when the distance between rule and
observation is acceptable.
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The global distance concept allows to model the
representation of the neighboring facts. But how can
we compute the effect of this distance on the
conclusion of the rule? As we said above, the
approximate inference is only possible when a meta-
knowledge exists in the system and allows it to run. In
our case, this point consists in linking imprecision
(observation and premise of rule) with uncertainty
(conclusion degree).
The conclusion degree is weakened in accordance
with the global distance. In our model, belief degrees
(α) associated to rules are numerical, so it is hoped,
for the whole coherence, to conserve a numerical final
degree (α’). In our work, we compute the final belief
degree using the following method : Let R be a rule of

the form « If A1 and A2 and ... An then (B, α) » and A
an observed fact, d is the global distance between A
and R (d is a symbolic distance). In order to compute
the final degree α’ of B, associated to the observation
A, we proceed in two steps.
��������

We numerize the symbolic distance d using a
function δ :

δ : D  ⎯⎯→ [0,1] ⊂ IR
     d  ⎯⎯→ d/(p-1)

For p possible values of d in D=[0 .. p-1], we will
have p equidistant values between 0 and 1.

��������
We compute α‘ using the following formula :

α’= α * (1-δ(d))

This formula includes the two aspects of the meta-
knowledge hypothesis mentioned above. It’s easy to
observe that little imprecisions (in cases where d=0)
don’t modify uncertainty. On the other hand, a
maximal distance (d = p-1) induces a complete
uncertainty (α’=0).
The proposed function also verify the properties of a
Modus Ponens generating function [14].
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For a new pixel to classify, the system begins by
computing its discretized components. This is done
according to the discretization technique used in the
building of the rules premises. Then the inference
engine regroups the fired rules according to the class
of their conclusion parts. In other words, for every
class Ci we obtain a set of rules, denoted Rules(Ci),
containing the fired rules that conclude to the class Ci.
We then have to compute a final belief degree
associated to each class, for this we use a co-norm S
such as :

S(p,q) = max (p,q)
or S(p,q) = p+q-p*q

We remind that a co-norm is a function used in
knowledge uncertainty treatment. It constitutes an
example of aggregation function [1] [16]. A co-norm
is a real function 

S : [0,1]x[0,1] → [0,1]

having the following properties :

c1 : S(1,1)=1
c2 : S(p,0)=S(0,p)=p
c3 : S(p,q)=S(q,p)
c4 : S(p,q)�S(r,c) if p�r and q�c
c5 : S(p,S(q,r))=S(S(p,q),r)



Finally, the winner class associated to the new pixel is
the class where the final belief degree is maximum.
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To validate our system, we test different kind of data
[2]. The experimental results, number of rules and
good classification rates, were obtained using the
cross-reference validation method.
We first test our system on the well-known Iris data of
Fisher (the number of classes is three and
observations are represented by four components
vectors). The experimental results are satisfactory and
reach 97.33% of good classification. A comparative
study with other learning methods, such as decision
trees [12] and induction graphs [17], shows that our
approach generally allows an improvement of the
classification rates.
We have also confronted our approach to image data
and tested our system on a cryo-section of human
thigh image. In this case, the number of classes is four
(bone, muscle, fat and marrow) and pixels are
represented by 5 attributes. The obtained
classification rates are very satisfying and reach 99%
of good recognition. An other kind of picture, a
colored butterfly, was tested too and leads to 85% of
good classification. This rate is also satisfying
according to the kind of the considered image where
classes boundaries are not well defined. These
satisfying results are the consequences of the adequate
representation of the expert’s knowledge by the
automatic generated rules. That means that our
building system is successful in the translation of the
elementary medical expert knowledge into production
rules. Moreover, the inference system exploits nearly-
perfectly these rules, as the low error rate proves.
These encouraging results lead us to test our
modelisation in other fields of expertise where objects
to classify can be represented by vectors.
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